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ABSTRACT 

The effects of heat generation on the Magnetohydrodynamics (MHD) natural convection flow along a vertical 
flat plate with non-uniform surface temperature are analyzed. The governing differential equations are 
transformed by introducing appropriate non-similarity variables to render them dimensionless, and then 
numerically resolved. Results for the details of velocity profiles, temperature profiles, local skin frictions, and 
rate of heat transfer are displayed graphically, and numerical tabulated data for skin friction and rate of local 
heat transfer are entered in tables with heat generation parameters and Joule Heating parameters. 
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INTRODUCTION:  

Natural convection plays a vital part in processes like 
those involving strong gravitational fields on a global 
scale or geological processes, and the effects of heat 
conduction play a significant role in these situations. 
Both viscous dissipation and pressure work were 
initially incorporated into the energy equation by 
Ackroyd, (1962). He demonstrated that the effect of 
pressure work dominates over that of viscous dissi-
pation. Magnetohydrodynamics (MHD) free convec-

tion flow with conduction and Joule heating along a 
vertical flat plate has been studied by Parveen and 
Alim, (2011) who have looked at the effects of viscous 
dissipation and temperature-dependent thermal con-

ductivity. In the context of heat generation Molla et al. 
(2004) investigated the issue of natural convection 
flow along a vertical wavy surface with a constant 
surface temperature. Stress analysis of the natural 

convection flow in a vertical flat plate subjected to 
joule heating and heat conduction (Alam et al., 2007; 
Islam et al., 2020).  
 

According to Prabhakar and Prabhakararao, (2013) a 
vertical conical annular porous medium is affected by 
a temperature variation described by a Power law. Free 
convection was conducted by Alam et al. (2007) using 
a vertically permeable circular cone, pressure work, 
and a temperature gradient across the cone's surface. 
The subject of the effect of a magnetic field on heat 
and fluid flow over a wavy surface has been explored 
by Tashtoush and Al-Odat, (2004). Some natural 
convection flows are affected by pressure stress work 
and viscous dissipation, as mentioned by Joshi and 
Gebhart, (1981). MHD-free convection from a vertical 
plate with power-law change in surface temperature, as 
studied by Abo-Eldahab and El Aziz, (2005) is subject 
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to the effects of viscous dissipation and Joule heating. 
Mahajan and Gebhart, (1989) have investigated the 
role of viscous dissipation in buoyancy-induced flows. 
Sparrow and Cess, (1961) investigate how magnetic 
fields influence heat transport via free convection. 
Shariful and Mohammadein, (2004) investigated the 
impact of thermal-diffusion and diffusion thermo on 
heat and mass transport in magnetohydrodynamics. 
Poots et al. (1961) perform magneto hydrodynamics 
with laminar natural convection flow. The presence of 
heat generation prompted Molla et al. (2006) to 
explore magnetohydrodynamic natural convection 
flow on a spherical surface with a homogeneous heat 
flux. With a thin vertical plate and non-uniform 
internal heat generation Mendez and Trevino, (2000) 
study conjugates conduction-natural convection heat 
transfer. Magneto-hydrodynamic free convection in a 
strong cross flow field was described by Kuiken, 
(1970). Free convection from a vertical permeable 
circular cone with a non-uniform surface heat flux is 
shown by Hossain and Paul, (2001). 
 

We have investigated the skin friction and local heat 
transfer coefficient as functions of Prandtl's number Pr, 
magnetic parameter M, Joule heating parameter J, and 

heat generation parameter Q, as well as the effects of 
velocity and temperature fields. 
 

Formulation of the Problem 

Take into account laminar free convection flow down a 
vertical plate placed in a stable environment, where u 
and v represent the velocity components in the 
directions, respectively, and where is vertically up and 
is the coordinate perpendicular to x. 
 

 
 

For steady, two-dimensional flow of the boundary 
layer continuity equation, momentum equation and 
energy equation including heat generation term and 
Joule heating term are given below. 
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 Where, 
pC

k


   is the thermal diffusivity. 

Where, for heated upward flows, x is taken vertically 
up from the active leading edge, and for cooled 
downward flows, x is taken vertically down. The 
temperature of quiescent ambient fluid 

T  at large 

values of y is taken to be constant. 
Where 

w
T is the temperature at the wall, T  is the 

fluid temperature,   is the kinematics velocity,   is 
the fluid thermal expansion coefficient, 

0  is the 

magnetic field strength, 
0Q is the heat generation 

coefficient, 
pC  is the specific heat at the constant 

pressure,   is the fluid density and p is the pressure. 
The terms for heat generation and Joule heating are the 
final two terms in the energy equation, respectively.   
Equations are too solved subject to the boundary 
conditions. 

 

w
TTovu  ,   on  0y  (4) 
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 TTUu ,  as  y  

wTTUu  ,  at  0x  
 

 

Where U  is the free stream velocity. 
The following generalizations are introduced to obtain 
the equations in terms of generalized stream and 

temperature functions  yxf ,  and  yx, . Now 
letting. 
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Now Equation (2) becomes 
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Again, we know 𝜕𝑇𝜕𝑥 = 𝛥𝑇𝜑𝑥 + 𝜑 (𝛥𝑇)𝑥 𝜕𝑇𝜕𝑦 = 𝛥𝑇𝜑𝑦 

 T as a constant and T  is a function of x . 𝜕2𝑇𝜕𝑦2 = 𝜈 𝜕2𝜓𝜕𝑦2 , 𝑃𝑟 = 𝜇𝑐𝑝𝑘 ,  𝑅𝑒 = 𝜌𝑣𝑙𝑐𝜇 ∴ 1𝜈 = 𝛼 𝜇𝐶𝑝𝑘  𝜇𝜌 = 𝛼 𝜇𝐶𝑝𝑘 ∴ 1𝜌 = 𝛼𝑘 𝐶𝑝 
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Where )( 0 TT  A stands for the downstream tem-

perature differential down the x-axis that would have 
occurred in the absence of the joule heating 
component. The real-world Grash of the number 

)0(xx GrGr   has an association with xGr . 
 

Transformation of the Governing Equations 

Assuming a similarity variable and a stream function 
of the following form. 
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The heat generation term and the Joule heating effect 
are the final two terms in the energy equation (8). It is 
widely understood that when these concepts are 
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Where, 𝑄 = 𝑄0 𝜉2𝜈 𝜌 𝐶𝑝 (14𝐺𝑟𝜉)12 
 

Q is the dimensionless heat generation parameter. 
Equations (1.10) and (1.12) are numerically integrated for the vertical surface case, with the following boundary 
conditions 
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Skin Friction Coefficient and Heat Transfer Coefficient 
For the flat surface the heat flux is given by, 
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Therefore, Skin friction coefficient 𝐶𝑓𝜉 = 2 𝜇 𝜈 𝑐(𝜉)𝑏2(𝜉)𝑓′′(0)𝜌𝜈2 𝑐2(𝜉)𝑏2(𝜉)𝑓′max2 (0) ∝ 2 𝜇 𝜈 𝑐(𝜉)𝑏2(𝜉)𝑓′′(0)𝜌𝜈2 𝑐2(𝜉)𝑏2(𝜉)  

 𝐶𝑓𝜉 = 𝑓′′(0)2(14 𝐺𝑟𝜉)14 
 

 

RESULTS AND DISCUSSION:  

The Effects of heat generation on MHD Natural 

Convection Flow along a Vertical Flat Plate with Non-

Uniform Surface Temperature have been analyzed in 

this present work. The settings of the parameter 

controlling heat generation in this simulation are Q = 

1.50, 1.20, 0.90, 0.50, magnetic parameter M = 0.50, 

0.40, 0.30, 0.20, 0.10, joule heating parameter J = 

0.50, 0.40, 0.30, 0.20, 0.10, and Prandlt’s number Pr = 

7.00, 3.00, 1.00, 0.70. If we know the functions f(ξ, η), 
 (ξ, η) and their derivatives for the various heat 

generating parameter values  Q, magnetic parameter 

M, Prandtl’s number Pr, and the Joule heating 

parameter J. Fig. 2–5 show the velocity and tem-

perature curves obtained from the solution . Also, the 

local skin friction ''f (ξ, 0) and local heat transfer '

(ξ, 0) obtained from figure 6 to 9. Fig. 2a and 2b 

display results for the effect of the heat generation 

parameter Q = 1.50, 1.20, 0.90, 0.50 for various values 

of the controlling parameter M = 0.50, Pr = 0.70, J = 

0.50, n = 1.00 on the velocity profile 'f (ξ, η) increa-

ses with the increase of heat generation parameter Q 

which indicates that the heat generation parameter 

increases the fluid motion. In Fig. 2b it is shown that 

the temperature profile  (ξ, η) increase for increasing 

values of Q with another controlling parameter. The 

effects of magnetic parameter or Hartmann number M 

= 0.50, 0.40, 0.30, 0.20, 0.10 for Q = 1.50, Pr = 0.70, J 

= 0.50 and n = 1.00 on the velocity profiles and 

temperature profiles are shown in Fig. 3a and 3b. Fig. 

3a and 3b show the impacts of magnetic parameter M 

on the velocity and temperature curves, respectively. 
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The velocity profiles are found to decrease as the value 

of M increases, whereas the temperature profiles 

increase as the value of M increases. In Fig. 4a and 4b 

illustrate the effect of Joule heating parameter J = 

0.50, 0.40, 0.30, 0.20, 0.10 for M = 0.50, Pr=0.70, Q = 

1.50 and n = 1.00 on the velocity profiles and 

temperature profiles are shown in Fig. 4a and 4b. Fig. 

4a and 4b show the impact of the Joule heating 

parameter J on the velocity and temperature curves, 

respectively. The velocity profiles in this image grow 

as the value of J increases, and the temperature 

profiles also increase with the value of the Joule 

heating parameter J increases. 

 

  
 

 

Fig. 2a and 2b: Displayed for M = 0.50, Pr = 0.70, J = 0.50, n = 1.00 and Q = 1.50, 1.20, 0.90, 0.50. 
 

  
 

Fig. 3a and 3b: Displayed for Q = 1.50, Pr = 070, J = 0.50, n = 1.00 and M = 0.50, 0.40, 0.30, 0.20, 0.10. 
 

  
 

Fig. 4a and 4b: Displayed for M = 0.50, Pr=0.70, Q = 1.50, n = 1.00 and J = 0.50, 0.40, 0.30, 0.20, 0.10. 
 

  
 

 

Fig. 5a and 5b: Displayed for M = 1.50, Q = 1.00, J = 0.50, n = 1.00 and Pr = 7.00, 3.00, 1.00, 0.70. 
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Fig. 6a and 6b: Displayed for M = 0.50, Pr  = 0.70, J = 0.50, n = 1.00 and Q = 1.50, 1.20, 0.90, 0.50. 
 

  
 

Fig. 7a and 7b: Displayed for Q = 1.50, Pr = 0.70, J = 0.50, n = 1.00 and M = 0.50, 0.40, 0.30, 0.20, 0.10. 
 

  
 

Fig. 8a and 8b: Displayed for M = 0.50, Pr = 0.70, Q = 1.50, n = 1.00 and J = 0.50, 0.40, 0.30, 0.20, 0.10. 
 

  
 

 

Fig. 9a and 9b: Displayed for M = 1.50, Q = 1.00, J = 0.50, n = 1.00 and Pr = 7.00, 3.00, 1.00, 0.70. 
 

Fig. 5a depicts the velocity profiles for different values 

of prandtl’s number, Pr = 7.00, 3.00, 1.00, 0.70 while 

the other controlling parameter M = 1.50, Q = 1.00, J = 

0.50, n = 1.00. Corresponding distribution of the 

temperature profiles  (ξ, η) in the fluids is shown in 

Fig. 5b. Fig. 5a shows that increasing the prandtl's 

number decreases the fluid velocity. Fig. 5b, on the 

other hand, shows that when the prandtl's number Pr 

increases, the temperature profiles within the boundary 

layer drop. Numerical values of the skin friction ''f (ξ, 
0) and the local heat transfer coefficient ' (ξ, 0) are 

depicted graphically in Fig. 6a and 6b respectively 

http://www.universepg.com/
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against ξ for different values of the heat generation 
parameter Q = 1.50, 1.20, 0.90, 0.50 for M = 0.50, Pr = 

0.70, J = 0.50, n = 1.00. It is seen from fig 6a that the 

skin friction ''f (ξ, 0) increases when the heat genera-

tion parameter Q increases. It is also observed in fig 

6b, local heat transfer coefficient ' (ξ, 0) increases 

while the heat generation parameter Q increases. The 

effects of magnetic parameter or Hartmann number M 

= 0.50, 0.40, 0.30, 0.20, 0.10 for Q = 1.50, Pr = 0.70, J 

= 0.50 and n = 1.00 on the local skin friction 

coefficient ''f (ξ, 0) and local heat transfer coefficient 

' (ξ, 0) are shown in Fig. 7a and 7b. Fig. 7a and Fig. 

7b it is evident that the increasing value of M leads to 

increase the skin friction coefficient ''f (ξ, 0) and 

decrease local heat transfer coefficient ' (ξ, 0). The 

variation of skin friction and heat transfer for different 

values of Joule heating parameter J = 0.50, 0.40, 0.30, 

0.20, 0.10 against ξ for M = 0.50, Pr=0.70, Q = 1.50 

and n = 1.00 are shown in figure 2.8a and 2.8b. Figure 

2.8a and figure 2.8b it is found that the increasing 

values of Joule heating parameter J  leads to increase 

both the  skin friction coefficient ''f (ξ, 0) and local 

heat transfer coefficient ' (ξ, 0). From Fig. 2a, it is 

observed that increase of the value of prandtl’s number 

Pr = 7.00, 3.00, 1.00, 0.70 leads to increase of the 

value of skin friction Coefficient ''f (ξ, 0) and local 

heat transfer coefficient ' (ξ, 0) also increases shown 

in figure 2.9b for the same values of  Prandlt’s number 

Pr against ξ M = 1.50, Q = 1.00, J = 0.50, n = 1.00. 
 

CONCLUSION: 

From the present investigation, the following 
conclusions may be drawn. Increased values of the 
heat generation parameter Q leads to increase the 
velocity profiles, the temperature profiles, the local 
skin friction coefficient ''f (x, 0) and the local heat 
transfer coefficient while M = 0.50, Pr = 0.70, J = 
0.50, Vd = 0.60, n = 1.00 . The effect of magnetic 
parameter or Hartmann Number M is to increase the 
temperature profiles, the local skin friction coefficient

''f (x, 0) but the local heat transfer coefficient, the 
velocity profiles decrease with the increasing value of 
M. Increased values of the Joule heating parameter J 
led to increase the velocity profiles, the skin friction 
coefficient, the temperature profile and the  local heat 

transfer coefficient. It has been observed that the skin 
friction and the local heat transfer coefficient increases 
for increasing value of Pr but the temperature profile, 
the velocity profile decreases with the increasing value 
of Pr. 
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